

Silicon Carbide Power Devices and Integrated Circuits

Jean-Marie Lauenstein, Megan Casey, Ted Wilcox, and Ken LaBel – NASA/GSFC Kristen Boomer – NASA GRC Anthony Phan, Hak Kim, and Alyson Topper – AS&D, Inc. Ahmad Hammoud – Vantage Partners, LLC

Acknowledgment:

This work was sponsored by:
NASA Office of Safety & Mission Assurance
in collaboration with:
NASA Space Technology Mission Directorate

Abbreviations & Acronyms

Acronym	Definition					
BOK	Body of Knowledge					
BV_{DSS}	Drain-Source Breakdown Voltage					
COR	Contracting Officer Representative					
COTS	Commercial Off The Shelf					
ESA	European Space Agency					
ETW	Electronics Technology Workshop					
FY	Fiscal Year					
GCR	Galactic Cosmic Ray					
I_D	Drain Current					
I _{DSS}	Drain-Source Leakage Current					
I_{G}	Gate Current					
IC	Integrated Circuit					
JAXA	Japan Aerospace Exploration Agency					
JFET	Junction Field Effect Transistor					
LBNL	Lawrence Berkeley National Laboratory cyclotron facility					
MOSFET	Metal Oxide Semiconductor Field Effect Transistor					

Acronym	Definition					
NESC	NASA Engineering & Safety Center					
RHA	Radiation Hardness Assurance					
RHBP	Radiation Hardened By Process					
Si	Silicon					
SiC	Silicon Carbide					
SJ	Super Junction					
SMD	Science Mission Directorate					
SME	Subject Matter Expert					
SOA	State Of the Art; Safe Operating Area					
STMD	Space Technology Mission Directorate					
SWAP	Size, Weight, And Power					
TAMU	Texas A&M University cyclotron facility					
TID	Total Ionizing Dose					
VDMOS	Vertical Double-diffused MOSFET					
V_{DS}	Drain-Source Voltage					
V_{GS}	Gate-Source Voltage					
V_{OUT}	Output Voltage					
V_{TH}	Gate Threshold Voltage					

Outline

- SiC Task Motivation & Technology Focus
- Vehicles for Collaborative Efforts
- Recent Results
 - The Radiation-Induced Leakage Current Dilemma
- Additional Activities
 - Gate drivers
 - SiC integrated circuits
 - State-of-the-Art radiation-hardened silicon MOSFET

Creative Commons Attribution-Share Alike 3.0 Unported license. Attribution: User:Materialscientist

Motivation

SiC Advantages vs. Si

- Material properties from:
- P. J. Wellmann, Z Anorg Allg Chem, 2017

- Game-changing NASA approaches are demanding higher-performance power electronics
 - SEE rad-hardened high-current
 MOSFETs > 250 V do not exist
- SWAP benefits for existing technologies
 - SiC power devices are flying now (Orion, MMS)

SiC devices are well-suited for high-voltage, high-temperature, and/or fast-switching applications

Motivation: NASA Tech Roadmaps

Technology Area	Capability Needed	Challenges				
TA 4: Robotics and Autonomous Systems	4.3.1.3: Integrated control and power electronics for motor controllers and actuators	Small form factor, more efficient power, and extreme space environment	New Frontier: Lunar Sample Return Planetary Flagship: Mars Sample Return Exploration: Crewed to Lunar Surface Exploration: Crewed to Mars Moons	2024 2026 2027 2027		
TA 3: Space Power and Energy Storage	3.3.5: Advanced power processing units and high voltage, high temperature, rad hard power switches, diodes, and passive devices	Reliable, high voltage, low loss, rad hard devices for high-power electric propulsion system and space environment	Into Solar System: Asteroid Redirect Planetary Flagship: Europa Exploration: Crewed to Lunar Surface Exploration: Crewed to Mars Moons New Frontier: Io Observer	2022 2022 2027 2027 2029		
TA 10: Nanotechnology	10.4.2.3: Fault-tolerant, extreme-environment Schottky diodes, switches for computing, logic gates, and memories	High speed, robust Schottky diodes and electronics for long-term operation in harsh environment	New Frontier: New Frontier Program 4 Planetary Exploration: Crewed Mars Orbital	2024 		
TA 15: Aeronautics	15.4.2.1: Alternative propulsion system (hybrid/electric)	High power, high density motors, and wide temperature range electronics and controllers	Ultra-efficient, environment-friendly vehicles			

Table from: K. Boomer, "Body Of Knowledge For Silicon Carbide Power Electronics," *NASA NEPP Report*, May 2017.

FY19 Wide Bandgap & SOA Si Power Devices

(Continuation)

Description:

- Evaluate suitability for space applications emerging wide bandgap (WBG) power devices, and state-of-the-art (SOA) radiation-hardened and promising commercial Si power MOSFETs
 - NASA roadmap calls out need for high power (high current, high voltage) discrete power devices (TA 3, 4, 10, 15)
- Investigate WBG radiation failure mechanisms
- Support WBG radiation test method standards and guidelines
- Leverage with other NASA Centers, government agencies, industry, and universities in coordinated effort to meet goals

FY19 Plans:

- SiC Test Vehicles:
- Wolfspeed power MOSFET and diode variants (goal: test method development/RHA guideline development)
- Infineon and/or USCi JFETs (goal: test method development/RHA guideline development)
- Radiation hardened engineering designs: various manufacturers as available (goal: feedback and support of hardening efforts)
- Avago optocoupler SiC MOSFET gate drivers (goal: hardness eval)
- RF GaN Test Vehicles:
- Wolfspeed RF GaN HEMTs (goal: test method guidance)
- Si Test Vehicles: (goal: independent rad hardness eval)
- Infineon rad-hardened high-voltage SJ MOSFETs
- Fuji rad-hardened high-voltage MOSFETs
- SiC radiation test guideline development

Schedule:

Schedule 201		8 2019										
	0	Ν	D	۲	F	M	Α	М	ے	7	Α	s
SEE testing of test vehicles/reports												
Proton tests of gate drivers/ report												
Lifetime reliability of heavy-ion degraded SiC power MOSFETs:												
		П							~			
sample prep, methods oversite												
Draft SiC radiation test guideline												\Diamond
Support of JEDEC test standards and												
ASTM guidelines												
Quarterly reports												

Lead Center/PI: GSFC/Jean-Marie Lauenstein

Sister tasks:

- 1) JPL for GaN power devices (GSFC GaN plans are complementary in coordination with this task).
- 2) GRC/ K. Boomer to lead Lifetime reliability of irradiated SiC

Deliverables:

- Quarterly and test reports
- Draft SiC test guideline October 2019
- Summary report due October 2019

Partners (NASA and Non-NASA Organizations):

NASA GRC, JSC, JPL; STMD ESI program

ESA, LANL, AFRL, NRL;

Wolfspeed, GE, USCi, ST Micro, Infineon, Fuji

Procurements:

Beam procurements: TAMU, LBNL, NW Proton (Chicago)

Travel to facilities, technical meetings, and 1 conference;

NRE costs for test set development, sample prep, and test support

NEPP Collaborations

Vehicle	Agency(ies)/Industry	Description
SBIR	(In coordination with: NASA GRC, GSFC LaRC, JPL, DOE, NRL, ARL)	Identification of SEE failure mechanisms, Development of radiation-hardened devices (SBIR subtopic managed by NEPP SiC Lead)
STMD ESI	Rensselaer Polytechnic Inst., Vanderbilt Univ., GE, Wolfspeed, NASA GRC, GSFC	SEE failure mechanisms through modeling (NEPP SiC lead serving as Research Collaborator)
NEPP WBG Working Group	High Reliability Virtual Electronics Center (HiREV) - AFRL DMEA; NRL; NASA JPL, JSC, GRC, GSFC	Coordinated efforts in radiation and reliability work on both GaN and SiC wide bandgap technology devices.
JEDEC JC13 Gov't Liaison Committee	JC13.1, JC13.7, SAE CE-12 communities, AFRL, DLA	JC-13.1/JC-13.7/SAE CE-12 SiC Tech Insertion Subcommittee meetings to develop test standards and address reliability concerns

+ Informal relationships to share data, subject matter expertise, and to track and/or evaluate industry developments

Goals of Collaborative SiC Efforts

- Understand heavy-ion induced degradation and failure
 - Both catastrophic and non-catastrophic effects
 - In a level of detail that enables:
 - Device hardening
 - On-orbit susceptibility/rate prediction
 - Test method guidelines
- Develop SEE-hardened power devices
 - Design, fabrication, and test validation

1200V MOSFET biased at 500V: increasing permanent drain leakage current with ion fluence

Same part type at 100V: permanent degraded gate leakage current with ion fluence (as measured post-irradiation)

The Problem of Leakage Current Degradation

lon-induced diode leakage current (I_R) findings:

- Degradation can be non-Poisson process:
 - ∆I_R can saturate with fluence
- Onset voltage (V_R) saturates quickly with LET
 - Saturation V_R is similar for 650 V 1700 V Schottky diodes

Saturation occurs before the high flux iron knee of the GCR spectrum: Mission orbit will have less influence on risk

The Problem of Leakage Current Degradation

Thresholds for SEB have uncertainty:

- At V_R = 485 V, after < 10⁴ Xe/cm², I_R = 10 mA with non-linearity of ΔI_R occurring before that
 - Is this fluence adequate to rule out SEB? (No)

Be wary of SEB "Safe Operating Areas"

The Problem of Leakage Current Degradation

LET (MeV - cm²/mg)

Witulski, IEEE TNS, 2018

MOSFETs add additional leakage current pathways:

- Gate-Source leakage measurable only with PIGS test
 - (not shown: At higher V_{DS}, device can/will fail PIGS test)
 - No damage from lighter ions
- Gate-Drain leakage increasing with beam exposure
- Drain-Source leakage: Similar to diode I_R leakage

How do we test? How do we harden? How is lifetime reliability impacted?

SiC Radiation Hardness by Process: 1200 V MOSFET

After Zhu, X., et al., 2017 ICSCRM

Color gradients span between known V_{DS} for given response types

- Reduced SEB susceptibility
 - Thicker epilayer
- Degradation of I_{DG} eliminated
 - Drain neck width reduction
- BUT minimal change in onset of other degradation effects:
 - $-\Delta I_D >> \Delta I_G$
 - latent gate damage

Continued research and development efforts are necessary to understand residual degradation mechanisms

- SEB safe operating area is difficult to reliably define
 - Susceptibility quickly saturates before the high-flux iron knee of the GCR spectrum
 - Mission orbit will have less influence on risk

- SEB safe operating area is difficult to reliably define
 - Susceptibility quickly saturates before the high-flux iron knee of the GCR spectrum
 - Mission orbit will have less influence on risk
- Application-specific temperature testing may be necessary
 - Dopants not fully ionized at room temperature
 - Effects of temperature on SEB susceptibility must be established

Rate of leakage current degradation in MOSFET increases with temperature

- SEB safe operating area is difficult to reliably define
 - Susceptibility quickly saturates before the high-flux iron knee of the GCR spectrum
 - Mission orbit will have less influence on risk
- Application-specific temperature testing may be necessary
 - Dopants not fully ionized at room temperature
 - Effects of temperature on SEB susceptibility must be established
- Some degradation mechanisms may persist despite RHBP efforts
 - Impact on device long-term reliability must be established

- SEB safe operating area is difficult to reliably define
 - Susceptibility quickly saturates before the high-flux iron knee of the GCR spectrum
 - Mission orbit will have less influence on risk
- Application-specific temperature testing may be necessary
 - Dopants not fully ionized at room temperature
 - Effects of temperature on SEB susceptibility must be established
- Some degradation mechanisms may persist despite RHBP efforts
 - Impact on device long-term reliability must be established
- Radiation hardening comes with a cost
 - As with Si power MOSFETs, electrical performance will suffer from hardening techniques

SiC Summary & RHA Conclusions (Cont'd)

- Lighter ion/lower LET tests will reveal nuances between designs and aid on-orbit degradation predictions
 - Responses are saturated at LETs dictated by typical mission destructive-SEE radiation requirements
 - LET should be specified in terms of LET(Si) but penetration range must be for SiC

SiC Summary & RHA Conclusions (Cont'd)

- Lighter ion/lower LET tests will reveal nuances between designs and aid on-orbit degradation predictions
 - Responses are saturated at LETs dictated by typical mission destructive-SEE radiation requirements
 - LET should be specified in terms of LET(Si) but penetration range must be for SiC
 - Space radiation environments and thus mission requirements are given in terms of LET(Si)
- Characterization data should include identification of voltage conditions at which different effects occur
 - Richer dataset will include how susceptibility to these effects changes with ion species/LET

Associated Activities: Gate Driver Thermal Stress Testing

- Broadcom ACPL-P346 optocoupler SiC MOSFET gate driver was evaluated under extreme temperatures and thermal cycling
 - Temperature effects on performance evaluated from -180 °C to +120 °C, well beyond -40 °C to + 105 °C rating: Parts continued to function
 - Successful restart capability at the extreme temperatures
 - No effects from 500 thermal cycles between -180 °C and +120 °C
 - See NASA NEPP Report, April 2018:
 K. Boomer, et al., "Performance of SiC MOSFET Gate Drive Optocoupler, ACPL-P346, Over Extended Temperature Range."
- Preliminary SEE testing planned this Fall:
 - 200-MeV proton testing in lieu of heavy ions due to package constraints

ACPL-P346: 2.5 A, rail-rail V_{out}

https://www.broadcom.com/products/optocouplers/industrial-plastic/isolated-gate-drive-optocouplers/gate-drives/acpl-p346-000e

Associated Activities: SiC IC Testing

- NASA GRC-developed Venus-worthy SiC integrated circuits will be radiation-tested in collaboration with GRC High-Temperature SiC IC team
 - Both TID and SEE tests to be performed this summer
 - Preliminary SEE tests suggest no catastrophic failures

NASA GRC SiC IC before and after 521 hours at Venus surface temperature and atmospheric conditions

Associated Activities: High Voltage Silicon SJ MOSFET

- Infineon BUY65CS05J rad-hardened 650-V SJ MOSFET heavy-ion SEE verification testing
 - To be completed this summer: engineering samples received
 - May fill some high-voltage/high power needs:
 - 650 V, 5.3 A, 1 Ω
 - SMD 0.5 hermetic package

Cartoon example of SJ MOSFET

